- Part 1: Introduction
- Part 2: Past work
- Part 3: Norovirus
- Part 4: Influenza
- Part 5: More stuff
2022-04-19 14:19:44
Adenovirus type 5 (ADV) infections of cotton rats.
\[ \begin{aligned} \dot U & = - bUV \\ \dot I & = bUV - dI \\ \dot V & = pI - cV \end{aligned} \]
\[ \begin{aligned} \textrm{Uninfected cells} \qquad \dot{U} & = - bUV \\ \textrm{Infected cells} \qquad \dot{I} & = bUV - d_I I \\ \textrm{Dead cells} \qquad \dot{D} & = d_I I \\ \textrm{Virus} \qquad \dot{V} & = \frac{pI}{1+s_F F} - (d_V V + k^{'}_{A}A + b^{'} U)V\\ \textrm{Innate response} \qquad \dot{F} & = p_F - d_F F + \frac{g_F (F_{max} - F)V}{V+h_V} \\ \textrm{B cells} \qquad \dot{B} & = \frac{F V}{FV+h_F} g_B B \\ \textrm{Antibodies} \qquad \dot{A} & = r_A B - d_A A - k_{A}AV \\ \end{aligned} \]
Conceptual model suggests that protection (and morbidity) could be peaked.
\[ \begin{align*} \textrm{Likelihood: } & \\ & y_{i} \sim \textrm{Normal} \left(\mu_{i}, \sigma \right) \\ \textrm{Linear model: } & \\ & \mu_{i} = \alpha_i + \beta x_i \\ \textrm{Priors: } & \\ & \sigma \sim \textrm{Half-Cauchy} \left(0,2 \right) \\ & \beta \sim \textrm{Normal} \left(0, 1 \right) \\ & \alpha_i \sim \textrm{Normal} \left(\delta, \gamma \right) \\ & \delta \sim \textrm{Normal} \left(25, 5 \right) \\ & \gamma \sim \textrm{Half-Cauchy} \left(0, 2 \right) \\ \end{align*} \]
Additional details for time-series data fitting
\[ \begin{align*} \textrm{Likelihood: } & \\ & y_{i,t} \sim \textrm{Normal} \left(\mu_{i,t}, \sigma \right) \\ \textrm{Time-series model: } & \\ & \mu_{i,t} = \log\left( \frac{m_i \exp(-d_i t)}{1 + \exp ( -g_i (t - s_i) )} \right) \\ \textrm{Parameter equations: } & \\ p_{i} & = p_{0,i} + p_1 x_i \\ g_{i} & = g_{0,i} + g_1 x_i \\ T_{i} & = T_{0,i} + s_1 x_i \\ d_{i} & = d_{0,i} + d_1 x_i \\ \end{align*} \]
Population-level priors for dose parameters. Multi-level, adaptive priors for intercept parameters.
Question: What is the impact of standard dose (SD) versus high dose (HD) vaccine on antibodies?
We investigate 4 antibody titer outcomes for each strain:
All HAI titer dilution values are converted to a scale from 0 - N with limit of detection = 0, lowest dilution (1:10) = 1, etc. up to highest dilution (1:20480) = 12.
For teaching (mature):
For research (WIP):